Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters

Database
Language
Document Type
Year range
1.
J Memb Sci ; 649: 120359, 2022 May 05.
Article in English | MEDLINE | ID: covidwho-1699821

ABSTRACT

Extracorporeal membrane oxygenation is a technique that provides short-term supports to the heart and lungs. It removes CO2 from the blood and provides enough oxygen, which is a huge help in the fight against COVID-19. As the key component, the artificial lung membranes have evolved in three generations including silicon, polypropylene and poly (4-methyl-1-pentene). Herein, we for the first time design and fabricate a novel poly (4-methyl-1-pentene)/polypropylene (PMP/PP) thin film composite (TFC) membrane with the anticoagulant coating composed of poly (sodium 4-styrenesulfonate) and cross-linked poly (vinyl alcohol). Poly (sodium 4-styrenesulfonate) provides sulfonic acid groups to inhibit the coagulant factors (FVIII and FXII), and cross-linked poly (vinyl alcohol) increase the stability of the anticoagulant coating and further improve the hydrophilicity via abundant hydroxyl groups to depress the protein adsorption. Long-term anticoagulant property was demonstrated by whole human blood for 28 days. Blood compatibility was evaluated by hemolysis rate, anticoagulation activity (APTT, TT and PT), complement activation, platelet activation and contact activation. Pure CO2, O2 and N2 permeation rates were determined to evaluate the mass transfer properties of PMP/PP TFC membranes. Gas permeation results revealed that gas permeation flux increased in the TFC membranes because of the decrease of crystallinity. Overall, the so prepared PMP/PP membrane shows good CO2/O2 selectivity and blood compatibility as novel TFC artificial lung membrane.

2.
Membranes (Basel) ; 11(7)2021 Jul 14.
Article in English | MEDLINE | ID: covidwho-1314696

ABSTRACT

The objective of this study is to clarify the pore structure of ECMO membranes by using our approach and theoretically validate the risk of SARS-CoV-2 permeation. There has not been any direct evidence for SARS-CoV-2 leakage through the membrane in ECMO support for critically ill COVID-19 patients. The precise pore structure of recent membranes was elucidated by direct microscopic observation for the first time. The three types of membranes, polypropylene, polypropylene coated with thin silicone layer, and polymethylpentene (PMP), have unique pore structures, and the pore structures on the inner and outer surfaces of the membranes are completely different anisotropic structures. From these data, the partition coefficients and intramembrane diffusion coefficients of SARS-CoV-2 were quantified using the membrane transport model. Therefore, SARS-CoV-2 may permeate the membrane wall with the plasma filtration flow or wet lung. The risk of SARS-CoV-2 permeation is completely different due to each anisotropic pore structure. We theoretically demonstrate that SARS-CoV-2 is highly likely to permeate the membrane transporting from the patient's blood to the gas side, and may diffuse from the gas side outlet port of ECMO leading to the extra-circulatory spread of the SARS-CoV-2 (ECMO infection). Development of a new generation of nanoscale membrane confirmation is proposed for next-generation extracorporeal membrane oxygenator and system with long-term durability is envisaged.

SELECTION OF CITATIONS
SEARCH DETAIL